
Neural Node Matching for Multi-Target Cross
Domain Recommendation

Wujiang Xu †∗, Shaoshuai Li †∗, Mingming Ha †ξ, Xiaobo Guo ‡§, Qiongxu Ma †,
Xiaolei Liu †, Linxun Chen †, Zhenfeng Zhu ‡§

† MYbank, Ant Group, Hangzhou, China
‡ Institute of Information Science, Beijing Jiaotong University, Beijing, China

ξ Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
{xuwujiang.xwj,lishaoshuai.lss,hamingming.hmm,qiongxu.mqx,liuxiaolei.lxl,

linxun.clx}@mybank.cn, {xb guo,zhfzhu}@bjtu.edu.cn

Abstract—Multi-Target Cross Domain Recommendation(CDR)
has attracted a surge of interest recently, which intends to
improve the recommendation performance in multiple domains
(or systems) simultaneously. Most existing multi-target CDR
frameworks primarily rely on the existence of the majority of
overlapped users across domains. However, general practical
CDR scenarios cannot meet the strictly overlapping requirements
and only share a small margin of common users across domains.
Additionally, the majority of users have quite a few historical
behaviors in such small-overlapping CDR scenarios. To tackle the
aforementioned issues, we propose a simple-yet-effective neural
node matching based framework for more general CDR settings,
i.e., only (few) partially overlapped users exist across domains
and most overlapped as well as non-overlapped users do have
sparse interactions. The present framework mainly contains
two modules: (i) intra-to-inter node matching module, and (ii)
intra node complementing module. Concretely, the first module
conducts intra-knowledge fusion within each domain and subse-
quent inter-knowledge fusion across domains by fully connected
user-user homogeneous graph information aggregating. By doing
this, the knowledge of all users, especially the non-overlapping
users, could be well extracted and transferred without relying
heavily on overlapping users. The second module introduces
user-item matching to complement the potential missing in-
teractions for each user and correct his/her under-represented
representations, especially for the users with observed sparse
interactions. Essentially, companion objectives are also inserted
into each module to guide the knowledge transferring pro-
cedures, which leads to positive effects on multiple domains
simultaneously. Extensive experiments on four multi-target CDR
tasks from both public and real-world large-scale financial
industry datasets demonstrate the remarkable performance of
our proposed approach. Our code is publicly available at the
link: https://github.com/WujiangXu/NMCDRR.

Index Terms—Recommendation, Cross-Domain Recommenda-
tion, Neural Graph Matching

I. INTRODUCTION

With the rapid development of the digital era, an increasing
number of users participate in multiple domains (platforms) for
various purposes. Since the overlapped users across domains
are likely to have similar interests, it is possible to boost the
recommendation performance of other (target) domains by
using information collected from several (source) domains,
which is the core idea of Cross-Domain Recommendation

* Joint first author. § Correspondding author.

(CDR). According to different recommendation scenarios,
CDR problems can be generally classified into two categories:
single-target CDR and multi-target CDR. The conventional
single-target CDR aims at using source domain information
to enhance recommendation performance in target domain.
Multi-target CDR expects to improve the recommendation
performance in multiple domains simultaneously and has re-
cently attracted increasing attention. To achieve a valid multi-
target CDR performance, several excellent works focusing on
feature combination [1]–[3] or bi-directional transfer mapping
strategies [4]–[7] have been proposed. However, these learning
frameworks primarily assume the existence of fully overlapped
users across domains, which is difficult to cope with general
partially overlapped CDR scenarios. In this work, we focus on
developing an effective multi-target CDR model for the more
general CDR settings with (few) partially overlapped users.
This intention faces two critical challenges.

CH1. For multiple domains with only (few) partially over-
lapped users, how to improve the recommendation perfor-
mance for multi-target CDR tasks?

Most previous multi-target CDR methods cannot be directly
extended to partially overlapped CDR settings, especially
for few overlapped users across domains. To explore the
knowledge of the non-overlapped users, several recent efforts
[8]–[11] try to introduce graphic deep learning to get both
overlapped and non-overlapped user embeddings by collect-
ing user-item interactions. However, such graph-based CDR
approaches still rely heavily on overlapped users (more than
80% are common users across domains) to bridge connec-
tions among multiple domains and then conduct knowledge
aggregation and transition processes to get the representative
embeddings of non-overlapped users. Nevertheless, in small-
overlapping CDR scenarios, such above methods have great
limitations. Therefore, it is challenging to guarantee the multi-
target cross-domain recommendation performance with only
quite a few overlapping users. To mitigate the small overlap-
ping problem, the recent model PTUPCDR [12] proposes a
meta network fed with pre-trained user/item representations to
generate personalized bridge functions to transfer preference
for each user, while VDEA [13] utilizes VAE framework
to exploit user domain-invariant embedding across different
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Fig. 1: The partially overlapped CDR scenarios.

domains. However, such methods treat all users equally and
do not pay special attention to the majority of data-sparse users
(i.e., users with quite a few historical behaviors), resulting in
inferior knowledge fusing and transferring effectiveness, which
leads to the second challenge.

CH2. For the majority of overlapping as well as non-
overlapping users with few historical behaviors, how to im-
prove the recommendation performance of multiple domains
simultaneously?

The user-item interactions of the most real-world recom-
mendation systems generally present the intrinsic long-tailed
distribution, which means that a majority of users (i.e., tail
users) have very few interactions and a few users (i.e., head
users) have a huge number of interactions. Consider the toy
example shown in Fig. 1, Mary and Alice could be roughly
treated as head users, while Mike, Lily, Rose, and Tom could
be treated as tail users. Essentially, both the overlapping and
non-overlapping tail users may be under-represented based
on their observed sparse interactions, since most representing
CDR models (e.g., Herograph [11]) are easily dominated by
the data-rich users. As shown in Fig. 1, Tom, Mary, and
Mike all like reading romantic book JO ROBB, but Mary
and Mike still like reading magic book Harry Potter and
educational book To Kill a Mockingbird respectively, thus
Tom may also have potential interests in Harry Potter and To
Kill a Mockingbird. Consequently, based on the only sparse
interaction with JO ROBB, a biased representation of Tom
would be got and used to conduct ranking recommendation
tasks, which may lead to inferior performance. How to get
informative embeddings of tail users by complementing their
potential missing interactions becomes another practical chal-
lenge, which is frequently ignored in existing multi-target
CDR models.

Our Approach. To address the aforementioned challenges,
we propose a novel neural node matching based framework for
multi-target CDR with only partially overlapped users, named
as NMCDR. Our model mainly contains two modules, namely
intra-to-inter node matching module and intra node comple-
menting module, which corresponds to tackle CH1 and CH2,
respectively. The intra-to-inter node matching module further
contains two components, e.g., intra node matching component

and inter node matching component, as shown in Fig. 2. In
detail, To tackle CH1, a heterogeneous graph encoder is
used to model the direct user-item interaction. Then, inspired
by [14], the intra node matching component designs a fully
connected user-user homogeneous graph within every single
domain and conducts user-to-user knowledge fusion. With this
operation, the knowledge flow within each domain can be
eased and each user can directly consider nodes beyond their
original neighbors. The enhanced user representations are then
fed into the inter node matching component, which conducts
user-to-user knowledge fusion for both overlapping and non-
overlapping users. By doing this, the knowledge of all users,
especially the non-overlapping users, could be well extracted
and transferred without relying heavily on overlapping users.
To tackle CH2, the intra node complementing module shown
in Fig. 2 conducts user-to-item matching and tends to correct
the biased representations by complementing the potential
missing interactions for each user, especially for the tail users.
Moreover, we insert companion objectives into each module
to guide knowledge fusion procedures and guarantee the
simultaneous performance improvement of multiple domains.

Contributions. Overall, our major contributions can be
summarized as follows:

(1) We develop a novel neural node matching based frame-
work to address the multi-target CDR scenarios with (few)
partially overlapped users, which employ intra-to-inter node
matching module and intra node complementing module to
efficiently and effectively lead positive recommendation effect
on all domains.

(2) To obtain representative user embeddings, especially the
tail users with observed sparse interactions, we consider com-
plementing the potential missing information for each user to
correct the biased representation for ranking recommendation
tasks. To our knowledge, this paper is the first work to correct
the potential interaction bias in multi-target CDR scenarios.

(3) We conduct extensive experiments on four CDR scenar-
ios including both public and real-world large-scale financial
industry datasets to show the remarkable performance of the
proposed approach in kinds of evaluation metrics. Besides, we
provide theoretical insight to evaluate our model stability.

II. METHODOLOGY

A. Problem Formulation

In this work, we consider a general partially overlapped
multi-target CDR scenario composed of two domains Z and
Z̄. Let GZ = (UZ ,VZ , EZ) and GZ̄ = (U Z̄ ,V Z̄ , E Z̄) be
the domain data, where U , V , E are the user set, item set
and edge set for each domain. Particularly, the overlapped
user subset is defined as UO = UZ ∩ U Z̄ , while the non-
overlapped user subset for each domain is UZnon = UZ\UO and
U Z̄non = U Z̄\UO respectively. Given the observed data, multi-
target CDR aims to improve the recommendation performance
of both domains simultaneously by fusing and transferring
knowledge across domains.
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Fig. 2: Overview of NMCDR. In the intra node matching component, the black (i.e., ut → u1) and blue (i.e., u1 → ut) solid arrow denote two different
types of messages propagated by tail and head users respectively. In the inter node matching component, the orange (i.e., u1 → ut) and blue (i.e., ut ↔ ut)
dashed line denotes the knowledge fusing bridge for non-overlapping and overlapping users respectively. The black dashed line in intra node complementing
component denotes the predicted virtual user-item interactions. LZ

CO , LZ̄
CO in each component represent companion objective loss, while LZ

CLS , LZ̄
CLS

indicates the final prediction loss.

B. Overview

Fig. 2 illustrates the pipeline of our proposed neural
node matching based framework for multi-target cross-domain
recommendation (NMCDR), which mainly consists of two
modules: intra-to-inter node matching module and intra node
complementing module. We first utilize a graph encoder to
model direct user-item interactions by building a heteroge-
neous user-item graph. Then, the learned user representation
will be fed into the intra-to-inter node matching module, which
further consists of an intra node matching component and
an inter node matching component. The intra node matching
component enhances user representation by conducting within-
domain fully connected user-to-user information aggregating,
while the inter node matching component tends to transfer
knowledge for both overlapping and non-overlapping users by
conducting cross-domain fully connected user-to-user infor-
mation aggregating. After that, the intra node complementing
module corrects the biased user representation by exploiting
the potential missing user-item interactions for each user,
especially for the tail users. Finally, the prediction layer
outputs the affinity score of a user-item pair for each domain
individually.

C. Heterogeneous Graph Encoder
For domain Z, we first construct a heterogeneous user-

item graph GZ to learn the users’ preference for each domain
explicitly. For each user and each item in GZ , we introduce
corresponding embedding vectors u ∈ RD and v ∈ RD
as their representations, where D denotes the embedding
dimension. Specifically, the initialized representations for N
users and M items of the domain Z can be obtained from the
following look-up table:

EZ =
[
uZ

1 , · · · ,uZ
N , vZ

1 , · · · ,vZ
M

]
. (1)

Formally, UZ ∈ R|UZ |×D and V Z ∈ R|VZ |×D are the
learnable embeddings for the user/item sets U and V . To
encoder the explicit user-item interactions within domain Z,
we utilize a vanilla GNN operation, which can be formulated
as message construction and message aggregation procedures.
Message Construction. Given a user-item pair (uZi , vZj ,
eZuivj ), we define the message from the item vZj to user uZi
with edge eZuivj as:

muZ
i ←vZj = fui(v

Z
j , e

Z
uivj ), (2)

where muZ
i ←vZj is the transferred message representation.

fui(·) denotes the message mapping function in the user-item
graph, which takes item embedding and edge embedding as
the input. In practice, we instantiate fui

(·) and rewrite Eq. 2
as follows:

muZ
i ←vZ

j
=

1

|NuZ
i
| (v

Z
j W

Z
hge + bZhge)e

Z
uivj , (3)

where WZ
hge ∈ RD×Dhge and bZhge ∈ RDhge are the trainable

weight matrix and bias vector during information propagation.
If user uZi interacts with item vZj , then eZuivj is set to 1,
else 0. Dhge is the transformation dimension. Following the
graph neural networks operation [15], [16], we set 1/|NuZ

i
| as

the graph Laplacian norm, where NuZ
i

denotes the first-hop
neighbors of user uZi . It is worth noticing that the message
mapping function can be replaced with any proposed graph
neural network kernels such as GCN [16] and GAT [17].
Message Aggregation. In this stage, we aggregate all the
messages from the user’s neighborhood to obtain his/her
representation. The aggregation function is formulated as:

uZ
g1i

= ReLU(m̃uZ
i
+

∑
vj∈NuZ

i

muZ
i ←vZ

j
), (4)

3



where uZg1i
denotes the representation vector of uZi after het-

erogeneous graph encoder, which consists of a self-mapping
message m̃uZ

i
= uZi W

Z
hge and aggregated neighboring mes-

sage. ReLU is the activation function.
For domain Z̄, to obtain the user representations, we

construct the heterogeneous user-item graph GZ̄ and con-
duct subsequent message construction as well as message
aggregation operations being similar with domain Z.

D. Intra-to-Inter node Matching Module

As shown in Fig. 2, the user representation obtained by
the heterogeneous graph encoder is then fed to the intra-
to-inter node matching module, which intends to effectively
fuse and transfer the knowledge of both overlapping and
non-overlapping users across domains without relying heavily
on common users. The intra-to-inter node matching module
further contains two components, e.g., intra node matching
component and inter node matching component. In what
follows, we will illustrate each component in detail.

1) Intra Node Matching Component: In most previous
GNN-based multi-target CDR methods [8]–[11], the user
representations derived from the graph encoder within each
domain are directly utilized for cross domain knowledge trans-
ferring. However, as the majority of users of each domain do
have few historical interactions, these tail users may be under-
represented based on their observed sparse interactions and
impair the subsequent cross domain knowledge transferring.
Thus we argue that it is critical to priory perform intra-domain
knowledge fusion for each domain. Inspired by [14], we design
a simple but effective fully connected homogeneous user-user
graph and conduct direct user-to-user information aggregating
like node-level matching in graph matching procedure [18],
which could enable each user to interact directly and consider
nodes beyond their original neighbors and thus ease the
knowledge flow within each domain.
Message Construction. During intra domain knowledge fus-
ing, we believe that information bridges between head users
and tail users should also be varied. Thus, for domain Z, we
first distinguish a user uZi as head user or tail user as follows:

uZ
i =

{
head user , |NuZ

i
| ≤ Khead

tail user , |NuZ
i
| > Khead

(5)

where Khead denotes the head/tail user discrimination thresh-
old. |NZ

ui
| represents the number of the items interacted by

each user uZi in the domain Z.
Then, by constructing a fully connected user-user homoge-

neous graph GZintra, for each user uZi , the matching message
from a head user uZk and a tail user uZl are formulated as:

mhead
uZ
i ←uZ

k
= fhead(u

Z
g1i
,uZ

g1k
) (6)

mtail
uZ
i ←uZ

l
= ftail(u

Z
g1i
,uZ

g1l
) (7)

where mhead
uZ
i ←uZ

k
, mtail

uZ
i ←uZ

l
are the message representations

from head and tail user respectively. fhead(·) and ftail(·)
represent corresponding message mapping function in graph
GZintra. Besides, mhead

uZ
i ←uZ

k
and mtail

uZ
i ←uZ

l
are represented by

the blue and black arrow in Intra node matching module of

Fig. 2, respectively. In practice, we implement fhead(·) and
ftail(·) as:

mhead
uZ
i ←uZ

k
= 1

|Nhead

uZ
i

| (u
Z
g1k

WZ
head + bZhead),

mtail
uZ
i ←uZ

l
= 1

|N tail

uZ
i

| (u
Z
g1l

WZ
tail + bZtail).

(8)

where WZ
head ∈ RDhge×Digm , WZ

tail ∈ RDhge×Digm , and
bZhead ∈ RDigm , bZtail ∈ RDigm are the trainable weight matri-
ces and bias vectors to transfer information from head and the
tail users respectively. Digm is a customized transformation
size. Similarly as above, we set 1/|N head

uZ
i
| and 1/|N tail

uZ
i
| as

the graph Laplacian norm, where N head
uZ
i

and N tail
uZ
i

denotes
the fully-connected head and tail user set for uZi .
Message Aggregation. For user uZi , the message extracted
from the head and tail users are first aggregated according to:

uZ
headi

= ReLU(
∑

uk∈Nhead

uZ
i

mhead
uZ
i ←uZ

k
),

uZ
taili

= ReLU(
∑

ul∈N tail

uZ
i

mtail
uZ
i ←uZ

l
).

(9)

Then, instead of direct concatenating or adding operation,
we design a fine-grained gating mechanism to fuse these two
kinds of messages as follows:

HZ
igm = σ(uZ

headiW
Z
h + bZh + uZ

tailiW
Z
t + bZt ),

uZ

g2
′
i
= tanh ((1−HZ

igm)� uZ
headi +HZ

igm � uZ
taili). (10)

where uZ
g2
′
i

denotes the fused message vector for user uZi .
σ(·) is the sigmoid function and � is the Hadamard product.
WZ

h ∈ RDigm×Digm , WZ
t ∈ RDigm×Digm , and bZh ∈ RDigm ,

bZt ∈ RDigm are the trainable parameters. The representation
of uZi after intra node matching component is obtained as:

uZ
g2i

= uZ

g2
′
i

+ uZ
g1i
. (11)

For domain Z̄, we construct the fully connected homo-
geneous user-user graph GZ̄intra and conduct subsequent
intra knowledge fusion being similar to domain Z.

2) Inter Node Matching Component: In this component, we
conduct the node matching operation for both overlapped and
non-overlapped users to fuse and transfer knowledge across
domains. Being similar to intra node matching component, we
introduce a fully connected cross-domain user-user graph and
treat overlapped users and non-overlapped users with different
message transferring bridges.
Message Construction. The fully connected cross-domain
user-user homogeneous graph Ginter indicates that each user
in one domain is fully connected to the users in the other
domain. For each user uZi , given the overlapped and non-
overlapped user-user pairs (uZi ,uZ̄i ) and (uZi ,uZ̄r ), the cross-
domain message transferring is formulated as:

mself

uZ
i ←uZ̄

i

= fself (u
Z
g2i
,uZ̄

g2i
),

mother
uZ
i ←uZ̄

r
= fother(u

Z
g2i
,uZ̄

g2k
),

(12)

where mself

uZ
i ←uZ̄

i

denotes the cross-domain message represen-

tation from the same (overlapped) user in domain Z̄ while

4



mother
uZ
i ←uZ̄

r
is the cross-domain message representation from

other (non-overlapped) users in domain Z̄. fself and fother
are message mapping functions and we instantiate them as:

mself

uZ
i ←uZ̄

i

= uZ̄
g2i

WZ
self + bZself ,

mother
uZ
i ←uZ̄

r
= 1

|Ncdr

uZ
i

| (u
Z̄
g2k

WZ
other + bZother),

(13)

where WZ
self ∈ RDigm×Dcgm , WZ

other ∈ RDigm×Dcgm and
bZself ∈ RDcgm , bZother ∈ RDcgm are the trainable parameters
to transfer the cross-domain knowledge among the overlapped
and non-overlapped users. Dcgm is the transformation di-
mension. We set 1/|N cdr

uZ
i
| as the graph Laplacian norm,

where N cdr
uZ
i

denotes the number of the fully connected non-
overlapped users from other domain Z̄ with respect to uZi .
As shown in Inter node matching module of Fig. 2, mself

uZ
i ←uZ̄

i

and mother
uZ
i ←uZ̄

r
are represented by the blue and the black solid

arrow, respectively.
Message Aggregation. For user uZi , the aggregated message
representations from the overlapped and the non-overlapped
users are computed as follows:

uZ
selfi =ReLU(mself

uZ
i ←uZ̄

i

),

uZ
otheri =ReLU(

∑
ur∈Ncdr

uZ
i

mother
uZ
i ←uZ̄

r
). (14)

Then, we fuse the user representation ug2i with the over-
lapped cross-domain information uselfi as follows:

uZ
g3∗i

= uZ
g2i

WZ
cross + uZ

selfi
(1−W Z̄

cross),

uZ̄
g3∗i

= uZ̄
g2i

W Z̄
cross + uZ̄

selfi
(1−WZ

cross),
(15)

where WZ
cross ∈ RDcgm×Dcgm and W Z̄

cross ∈ RDcgm×Dcgm

denote the transformation matrices. Then, we utilize a gating
network to further enhance the user representation by adopting
the cross-domain message from the non-overlapped users.
Mathematically, the gating operation denotes as:

HZ
cdr =σ(uZ

g3∗i
WZ

s + bZs + uZ
otheriW

Z
o + bZo ),

uZ

g3
′
i
=tanh ((1−HZ

cdr)� uZ
g3∗i

+HZ
cdr � uZ

otheri), (16)

where {WZ
s ,W

Z
o } ∈ RDcgm×Dcgm and {bZs , bZo } ∈ RDcgm

are the trainable weights and biases. σ(·) is the sigmoid
function and � is the Hadamard product. The representation
of uZi after inter node matching component is obtained as:

uZ
g3i

= uZ

g3
′
i

+ uZ
g2i
. (17)

Similar inter node matching processes are operated on
domain Z̄.

E. Intra Node Complementing Module

Intra-to-inter node matching module complements the user’s
latent interests by transferring the information within and cross
domains, but the insufficiency of the user representation still
remains due to their observed sparse historical behaviors. In
order to further tackle this issue, we propose a node comple-
menting module to correct the biased representations before

ranking recommendation tasks. Concretely, we complement
the potential missing interactions by measuring the similarity
between the user and item representations (i.e., user-item
matching procedure) and then generate virtual link strength
for each domain. As for a user-item pair (uZi ,vZj ), the virtual
link strength can be calculated as follows.

αuZ
i vZ

j
=

exp(uZ
g3i

vZ
j

T
)∑

vj∈NuZ
i

exp(uZ
g3i

vZ
j

T
)
. (18)

With the virtual link strength, we update the user representa-
tion as:

uZ
g4i

= uZ
g3i

+
∑

vj∈NuZ
i

αuZ
i vZ

j
vZ
j W

Z
ref + bZref , (19)

where WZ
ref ∈ RDcgm×Dref and bZref ∈ RDref are the

trainable parameters of the node complementing operation.
Dref is the transformation dimension. Similar intra node
complementing processes are operated on domain Z̄.

F. Prediction Layer
After obtaining user/item representations, we construct a

prediction layer to estimate the user’s preference towards the
target item as:

ŷZui,vj = σ(MLPs(uZ
g4i
||vZ

j )) (20)

where MLPs are the stacked MLP layers with the input of
the concatenation of the user and item embeddings. σ denotes
the sigmoid function. The prediction layer in the domain Z̄
is similar.

G. Companion Objective and Loss Function
Inspired by [19], [20], we insert companion objectives into

each key module to regularize the embedding learning and
expedite model convergence during training. Given the user-
item pairs corresponding to each key component as mentioned
above, i.e., (uZi , vZj ), (uZg1i

, vZj ), (uZg2i
, vZj ) and (uZg3i

, vZj ),
each of them is fed into a shared prediction layer and we can
get the corresponding prediction outputs as ŷZg0, ŷZg1, ŷZg2 and
ŷZg3 according to Eq. 20. In this work, we adopt the Binary
Cross Entropy (BCE) loss for the companion objectives. The
common definition of the BCE loss can be formulated as:

`(ŷ, y) = −[y log ŷ + (1− y) log(1− ŷ)]. (21)

ŷ is the prediction result and y represents the ground-truth
label. The companion objectives can be written as follows:

LZ
CO =

∑
ui∈UZ ,vj∈VZ

[
w1`(ŷ

Z
g0uivj

, yZuivj ) + w2`(ŷ
Z
g1uivj

, yZuivj )

+w3`(ŷ
Z
g2uivj

, yZuivj ) + w4`(ŷ
Z
g3uivj

, yZuivj )
]
, (22)

where yZuivj is the ground-truth label for a real interaction
between ui and vj in domain Z, and w1,2,3,4 is the static or
dynamically computed weight per term. Besides, except for the
above companion objectives loss, the model final prediction
loss is written as:

LZ
cls =

∑
ui∈UZ ,

vj∈VZ

`(ŷZuivj , y
Z
uivj ). (23)
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The companion losses and final prediction loss for
domain Z̄ could be obtained in a similar way. Finally, the
overall loss could be obtained as:

Ltotal = w5LZ
CO + w6LZ̄

CO + w7LZ
cls + w8LZ̄

cls. (24)

where w5,6,7,8 are tradeoff parameters.

H. Theoretical Analysis of Model Stability

To provide a theoretical insight into our model performance,
we conduct an essential stability analysis in this section.
Following the works [21]–[23], the stability of one model
could be defined as:

Definition 1. Given user node u and item node v within a
graph, a GNN model framework Φ is said to be stable if:

‖zu,v − zu′,v‖2 ≤ γ‖xu − x′u‖, (25)

where u′ denotes the user node u with perturbations. zu,v
represents the predicted possible interactions of u and v by
framework Φ. xu and x′u are the node embeddings for u and
u′. γ denotes the Lipschitz constant.

To derive the upper bound of our model instability, we
compress our model into three layers, i.e., a heterogeneous
graph encoder layer (first layer), a fully connected homoge-
neous graph encoder layer (second layer), and a prediction
layer (third layer). The representations of u after the first and
second layer are formulated as:

h1
u =sp(W 1

a xu +
1

n
W 1

n

∑
v∈Nu

xv + b1),

h2
u =sp(W 2

ah
1
u +

1

N − 1
W 2

n

∑
v∈G\u

h1
v + b2), (26)

Similarly, we can get the representation h2
v for node v. Then

zu,v = softmax(W 3
a (h2

u‖h2
v) + b3). (27)

where W 1
a , W 1

n , W 2
a , W 2

n and W 3
a are the transformation

matrix, b1, b2, b3 are the bias, Nu denotes the first-order
neighbor of the user u, G \ u denotes the users in the graph
G expect user u, n denotes the number of neighborhood of
u, N is the total number of node in graph. sp denotes the
softplus activation function, which is a smooth approximation
of the ReLU function. Similar operations are also operated on
u′. Consequently, we can get:

‖zu,v − zu′,v‖2 = ‖softmax(su,v)− softmax(su′,v)‖2

≤ Csf‖W 3
a ‖2‖sp(W 2

ah
1
u +

1

N − 1
W 2

n

∑
v∈G\u

h1
v + b2)

− sp(W 2
ah
′1
u +

1

N − 1
W 2

n

∑
v∈G\u

h1
v′ + b2)‖2

≤ CsfCsp‖W 3
a ‖2‖(‖W 2

a ‖2‖h1
u − h′1u ‖2

+
1

N − 1
‖W 2

n‖2‖
∑

v∈G\u

h1
v −

∑
v∈G\u

h1
v′‖2)‖2, (28)

where Csf and Csp represents the Lipschitz constant for the
softmax and softplus function respectively. Since

‖h1
u − h′1u ‖2 =‖sp(W 1

a xu +
1

n
W 1

n

∑
v∈Nu

xv + b1)

− sp(W 1
a x
′
u +

1

n
W 1

n

∑
v∈Nu

xv + b1)‖2

≤Csp‖W 1
a ‖2‖xu − x′u‖2, (29)

For vi /∈ Nu, we can get h1
v′i
− h1

vi = 0. For vj ∈ Nu,

‖h1
v′j
− h1

vj‖2

=‖sp(W 1
a xvj +

1

nj
W 1

n

∑
k∈Nvj

\u

xk +
1

nj
W 1

nxu + b1)

− sp(W 1
a xvj +

1

nj
W 1

n

∑
k∈Nvj

\u

xk +
1

nj
W 1

nx
′
u + b1)‖2

≤ 1

nj
Csp‖W 1

n‖2‖xu − x′u‖2, (30)

where nj is the number of neighborhood of vj . Then, we
can get the instability upper bound of our model as:

‖zu,v−zu′,v‖2 ≤ CsfC2
sp‖W 3

a ‖2(‖W 2
a ‖2‖W 1

a ‖2

+

∑
vj∈Nu

1
nj

N − 1
‖W 2

n‖2‖W 1
n‖2)‖xu − x′u‖2 (31)

Noting that an appropriate instability upper bound is essential
for one model’s robustness (cannot be too large) and discerni-
bility (cannot be too small). As shown in Eq. 31, we observe
the model instability upper bound is quite correlated with the
norm of transformation matrix. In ideal cases, each user/item
should have distinct learnable transformation matrices to get an
appropriate instability upper bound for the model. However,
too many learnable transformation matrices would result in
model parameter explosion and is quite unpractical. Thus, in
this paper, we distinguish head and tail users, according to
their number of neighborhood and utilize different learnable
transformation matrices instead of common one.

III. EXPERIMENTS

In this section, we first present the experimental settings,
including the datasets, evaluation metrics and comparison
methods. Then, we conduct several detailed experiments to
answer the following questions (RQs):
• RQ1: How does NMCDR perform on (few) partially

overlapped multi-target CDR scenarios compared with
the state-of-the-art methods?

• RQ2: How do the different modules of NMCDR con-
tribute to the performance gain of our method?

• RQ3: How do different hyperparameter settings of NM-
CDR influence the recommendation performance?

A. Experimental Setting

1) Datasets: We conduct experiments on four tasks derived
from a public and a real-world industrial dataset. Following
existing researches [6], [9]–[12], we evaluate our method on
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Amazon1 [24] datasets, which consist of 24 disjoint item
domains and we select 3 pairs of domains to formulate three
tasks, i.e., “Music-Movie”, “Cloth-Sport” and “Phone-Elec”.
Besides, we conduct another task on a large-scale financial
CDR dataset, which is collected from traffic logs of the online
recommender system of MYbank of Ant Group2. The financial
dataset describes users’ interactions in financial products such
as debit, trust, i.e., “Loan-Fund”. The concrete statistics of
each task are summarized in Table I.

TABLE I: Statistics on the Amazon and MYbank datasets.

Dataset Users Items Ratings #Overlapping Density

Amazon Music 50,841 43,858 713,740 15,081 0.03%
Movie 87,875 38,643 1,184,889 0.03%

Amazon Cloth 27,519 9,481 161,010 16,337 0.06%
Sport 107,984 40,460 851,553 0.02%

Amazon Phone 41,829 17,943 194,121 7,857 0.03%
Elec 27,328 12,655 170,426 0.05%

MYbank Loan 147,837 1,488 304,409 6,530 0.14%
Fund 65,257 1,319 86,281 0.10%

#Overlapping denotes the number of overlapping users across domains.

2) Evaluation Metrics: To verify NMCDR’s capability
of handling partially overlapping multi-target CDR tasks,
we vary the overlapping ratio Ku of each dataset in
{0.1%, 1%, 10%, 50%, 90%}. Different overlapping ratios in-
dicate that different numbers of common users are shared
across domains. For example, in Amazon ”Music-Movie”
dataset with Ku = 10%, the number of the overlapped users
is calculated like 15, 081 ∗ 0.1 = 1508. Following common
practice in previous CDR literature [25]–[27] , we utilize the
leave-one-out technique to evaluate the performance of the
developed model. Meanwhile, we follow the above works and
randomly sample 199 negative items (i.e., items are not inter-
acted by the user) along with 1 positive item (i.e., ground-truth
interaction) to form the recommendation candidates to conduct
the ranking test. Based on the ranking results, we utilize the
typical top-N metrics normalized discounted cumulative gain
(NDCG@10), and hit rate (HR@10) to evaluate the model
performance, which are frequently used in the CDR scenarios
[8], [9], [28]. For all the metrics, higher values indicate better
performance.

3) Comparison Methods: We quantitatively compare NM-
CDR against several state-of-the-art methods which can be
divided into three classes.

Single-Domain Recommendation Methods: (i) LR [29] is a
generalized linear approach which stacks several multi-layer
perceptrons (MLPs) to model the user-item interaction. (ii)
BPR [26] is a typical collaborative filtering (CF) based method
that measures the relevance between users and items by
matrix factorization and optimizes pairwise loss with negative
samples. (iii) NeuMF [25] introduces a novel MF component
which replaces the inner dot semantic metric with a neural
architecture to learn an arbitrary mapping function.

1http://jmcauley.ucsd.edu/data/amazon/index 2014.html
2https://www.antgroup.com/en

Multi-Task Learning Methods: (i) MMoE [30] utilizes
several domain-shared mixture-of-expert encoders along with
domain-specific gating network to optimize each domain-
specific downstream task. (ii) PLE [31] designs shared en-
coder and task-specific encoders explicitly and introduces a
progressive routing mechanism to extract and separate deeper
domain-related knowledge gradually,

Cross-Domain Recommendation Methods: We first use sev-
eral typical cross-domain models based on fully overlapping
conditions as baselines: (i) CoNet [4] utilizes multi-layer feed-
forward networks along with cross connections to enables
dual knowledge transfer across domains. (ii) MiNet [6] jointly
models three types of user interest and contains item-level and
interest-level attentions to distill useful information from user
historical behaviors. (iii) GA-DTCDR [5] models user-item
interactions via graph neural networks for every single domain
and introduces a pairwise attention-based sharing module to
transfer information across domains. Then, we adopt several
cross-domain models intending to handle partially overlapped
CDR tasks as baselines: (iv) DML [10] develops a novel latent
orthogonal mapping strategy by dual metric learning method
to preserve user relations between different domains. (v) Hero-
Graph [11] introduces a shared global graph collecting users
and items from multiple domains and transferring the global
information to enhance each local domain recommendation
performance. (vi) PTUPCDR [12] utilizes pre-trained embed-
ding and a meta network to generate a personalized bridge
functions which can transfer the personalized preferences for
each user across domains.

4) Parameter Settings: To make a fair experimental com-
parison, we adopt the same hyper-parameters for all the
approaches. Specifically, the embedding dimension D is set
as 128, the batch size is set as 512, the learning rate is
fixed as 0.0001, and the negative sampling number is fixed
as 1 for training and 199 for validation and test. The Adam
optimizer is used to update all parameters. For the specific
hyper-parameters used in the comparison baselines, we follow
their reported values in the official literature. Additionally, for
NMCDR, the number of graph aggregation layers in each
component is set as 3 for the intra-to-inter node matching
module and 2 for intra node complementing module. Besides,
we set Dhge = 128, Digm = 128, Dcgm = 128, Dref = 128,
Khead = 7 and w1,2,3,4,5,6,7,8 = 1. For all comparison models,
we run each experiment five times and select the best results.

B. Performance Comparisons (RQ1)

Tables II–V report the HR@10 and NDCG@10 evaluation
metrics on four multi-target CDR tasks. The best results of
each column are highlighted in boldface, while the second-
best results are underlined. The performance of all mod-
els decreases with the decreasing of the overlapping ratio
Ku, which makes sense as fewer overlapping users may
make knowledge transfer across domains more challenging.
Our NMCDR achieves average 24.84% improvements on
Amazon datasets and average 3.31% improvements on
MYbank datasets compared with second-best baselines
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TABLE II: Experimental results (%) on the bi-directional Music-Movie CDR scenario with different user overlapped ratio.

Methods

Music-domain recommendation Movie-domain recommendation

Ku=0.1% Ku=1% Ku=10% Ku=50% Ku=90% Ku=0.1% Ku=1% Ku=10% Ku=50% Ku=90%

NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR

LR [29] 5.25 9.31 5.78 10.03 5.92 11.40 7.36 14.41 9.74 18.58 31.36 47.08 31.41 47.01 31.61 47.62 31.66 47.76 31.64 47.66
BPR [26] 2.97 6.63 2.92 6.77 2.67 5.76 2.79 6.15 2.92 6.26 21.63 35.59 21.65 35.61 21.79 35.78 22.00 36.09 21.97 36.14

NeuMF [25] 4.86 9.17 5.01 9.78 5.07 9.87 5.58 11.18 6.00 11.93 28.79 43.27 28.96 42.84 29.02 43.58 29.32 44.16 29.21 43.91

MMoE [30] 6.60 12.83 6.85 14.25 6.95 14.69 9.02 18.30 10.44 20.70 30.20 48.54 31.15 47.12 31.31 47.77 31.32 47.84 31.80 48.07
PLE [31] 6.66 13.12 6.89 14.26 7.25 14.60 9.00 17.64 10.08 19.78 31.72 47.47 31.83 47.46 31.96 47.89 32.04 47.89 32.02 48.03

CoNet [4] 7.03 14.10 7.26 14.40 7.48 15.24 9.61 19.47 10.19 20.75 31.06 47.07 31.26 47.24 31.30 47.42 31.40 47.55 31.37 47.51
MiNet [6] 5.19 11.42 5.67 11.85 6.24 12.43 8.84 17.16 9.37 17.69 29.95 44.78 30.22 45.25 29.85 45.01 29.58 44.84 29.67 45.13

GA-DTCDR [5] 7.03 14.03 7.17 14.53 7.26 14.60 9.54 19.17 10.16 19.97 31.56 47.36 31.61 47.41 31.70 47.63 31.90 47.77 31.85 47.81

DML [10] 6.81 13.08 7.32 13.54 7.99 15.58 9.58 18.66 10.55 20.33 26.36 40.84 27.06 41.47 27.44 41.63 27.36 41.76 27.42 41.86
HeroGraph [11] 6.59 13.40 7.44 13.89 7.02 14.49 9.15 18.55 10.34 20.33 32.05 48.14 32.22 48.38 32.16 48.40 32.23 48.52 32.18 48.43
PTUPCDR [12] 7.60 14.95 7.75 15.23 8.28 16.58 9.89 20.08 10.97 21.31 31.80 47.31 31.92 47.65 31.92 47.84 31.90 47.94 31.93 47.96

NMCDR 8.29 16.28 8.43 16.52 8.50 17.00 11.26 21.58 12.28 23.19 33.39 50.22 33.57 50.67 33.70 50.91 33.96 51.13 33.94 51.12
Improvement(%) 9.08 8.90 8.77 8.47 2.66 2.53 13.85 7.47 11.94 8.82 4.18 4.32 4.19 4.73 4.79 5.19 5.37 5.38 5.47 5.55

TABLE III: Experimental results (%) on the bi-directional Cloth-Sport CDR scenario with different user overlapped ratio.

Methods

Cloth-domain recommendation Sport-domain recommendation

Ku=0.1% Ku=1% Ku=10% Ku=50% Ku=90% Ku=0.1% Ku=1% Ku=10% Ku=50% Ku=90%

NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR

LR [29] 5.02 11.03 5.64 11.58 6.32 12.40 6.65 13.13 7.16 14.18 9.24 18.39 10.01 19.14 10.79 20.12 11.28 21.15 11.45 21.36
BPR [26] 2.52 5.65 2.60 5.70 2.70 5.87 2.66 5.93 2.74 5.93 2.38 5.13 2.44 5.33 2.64 5.88 2.74 6.04 2.79 6.04

NeuMF [25] 2.88 7.02 3.48 7.65 4.26 8.75 4.35 8.82 4.35 9.16 6.19 11.45 6.43 12.43 6.71 12.96 7.09 13.62 7.52 14.41

MMoE [30] 6.03 12.30 6.10 12.46 6.20 12.87 6.65 13.73 7.03 14.50 9.89 18.99 9.97 19.08 10.43 19.84 10.89 20.81 11.39 21.76
PLE [31] 5.85 11.62 6.02 11.85 6.29 12.51 7.00 14.01 7.15 14.35 9.98 18.35 10.01 18.44 10.49 19.68 11.31 20.87 11.39 21.05

CoNet [4] 6.02 12.06 6.13 12.52 6.26 12.85 6.88 14.02 7.33 14.79 9.59 18.30 9.68 18.49 9.84 18.63 10.84 20.52 11.23 21.35
MiNet [6] 5.07 10.40 5.24 10.61 5.41 10.87 6.17 12.51 6.66 13.35 8.37 16.05 8.62 16.62 8.84 16.98 9.72 18.30 10.58 19.96

GA-DTCDR [5] 5.61 12.13 5.68 12.28 6.22 12.90 7.04 14.06 7.59 14.85 10.71 20.28 10.75 20.34 10.91 20.55 11.63 21.86 12.25 22.96

DML [10] 5.37 10.63 5.44 10.90 5.59 11.10 6.31 12.57 6.55 12.96 6.51 12.42 6.53 12.49 6.62 12.73 7.05 13.47 7.75 14.99
HeroGraph [11] 6.21 12.30 6.34 12.53 6.37 12.75 7.06 13.90 7.51 14.75 10.45 19.53 10.52 19.91 11.06 20.74 11.77 21.73 12.24 22.75
PTUPCDR [12] 6.22 13.07 6.63 13.24 6.79 13.76 7.36 14.78 7.58 15.52 10.66 19.88 10.91 20.33 11.14 20.77 11.79 22.20 12.18 22.95

NMCDR 8.40 16.57 8.50 16.63 8.87 17.73 9.26 18.33 9.54 19.05 13.52 25.36 13.79 25.53 14.06 26.15 14.91 27.54 15.17 28.10
Improvement(%) 35.05 26.78 28.21 25.60 30.63 28.85 25.82 24.02 25.69 22.74 26.24 25.05 26.40 25.52 26.21 25.90 26.46 24.05 23.84 22.39

TABLE IV: Experimental results (%) on the bi-directional Phone-Elec CDR scenario with different user overlapped ratio.

Methods

Phone-domain recommendation Elec-domain recommendation

Ku=0.1% Ku=1% Ku=10% Ku=50% Ku=90% Ku=0.1% Ku=1% Ku=10% Ku=50% Ku=90%

NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR

LR [29] 4.12 7.83 4.54 8.75 5.96 12.03 13.06 23.29 15.03 26.58 19.67 31.43 19.99 31.91 19.98 32.48 20.88 33.83 21.29 34.47
BPR [26] 2.49 5.22 2.56 5.32 2.55 5.58 2.67 5.84 3.10 6.72 8.39 15.35 8.47 15.47 8.66 15.76 9.80 17.47 10.79 19.07

NeuMF [25] 3.45 6.73 3.54 7.07 4.01 8.34 7.79 14.36 10.40 18.65 15.82 25.25 16.04 26.12 16.27 26.17 17.12 27.43 17.77 28.60

MMoE [30] 3.95 8.71 4.18 9.05 7.54 15.56 13.66 24.85 16.08 28.67 20.16 32.07 20.27 32.83 20.85 33.24 21.05 34.05 21.64 34.88
PLE [31] 4.24 9.13 4.82 9.92 7.27 14.55 13.84 24.94 16.22 28.27 19.95 32.61 20.32 32.73 20.75 33.08 21.60 34.44 22.21 35.60

CoNet [4] 3.93 8.16 4.02 8.46 6.88 14.23 13.21 24.26 15.67 28.23 19.65 31.57 19.77 32.13 20.20 32.89 21.00 34.10 21.56 35.02
MiNet [6] 3.56 7.58 3.66 7.70 7.22 14.20 13.23 23.51 15.83 27.63 18.22 28.61 18.99 28.64 19.30 31.24 19.89 31.90 20.64 33.14

GA-DTCDR [5] 3.70 7.70 4.41 9.18 7.54 15.14 14.13 25.42 16.36 28.80 20.39 32.85 20.55 32.90 20.75 33.77 21.08 34.08 22.20 35.75

DML [10] 4.56 9.39 4.62 9.88 7.08 13.79 12.76 23.21 14.64 26.24 15.70 25.59 15.72 25.66 16.09 25.98 16.93 27.38 17.54 28.48
HeroGraph [11] 4.21 9.03 4.32 9.76 7.77 15.71 14.22 25.82 16.33 29.20 19.09 31.27 19.99 31.91 21.11 34.31 21.19 34.31 21.58 34.84
PTUPCDR [12] 4.29 8.88 4.65 9.18 8.24 16.30 14.51 25.82 16.84 29.39 20.51 32.73 20.60 32.94 20.93 33.89 21.80 35.17 22.31 35.86

NMCDR 6.29 12.27 6.46 12.98 10.82 20.98 17.44 30.87 19.18 33.03 23.49 37.61 23.91 37.84 24.17 39.03 24.45 39.49 24.60 39.84
Improvement(%) 37.93 30.67 38.92 31.38 31.31 28.71 20.19 19.56 13.90 12.39 14.53 14.49 16.06 14.88 14.50 13.76 12.16 12.28 10.26 11.10

over all overlapping settings. Besides, we have the following
insightful findings:

1) For Single-Domain Recommendation Methods: (i) LR
with stable generalization ability consistently outperforms CF-
based methods (i.e., BPR and NeuMF) suffering from the data-
sparsity issue. (ii) The multi-task methods and cross-domain

methods both embody the superior performance to single-
domain methods in most cases with the overlapping ratio range
10%–90%. However, their performances drop dramatically
under extremely small overlapping ratio (e.g. 0.1%) and tend
to be similar with LR, implying that they cannot effectively
collect and transfer the cross-domain knowledge.
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TABLE V: Experimental results (%) on the bi-directional Loan-Fund CDR scenario with different user overlapped ratio.

Methods

Loan-domain recommendation Fund-domain recommendation

Ku=0.1% Ku=1% Ku=10% Ku=50% Ku=90% Ku=0.1% Ku=1% Ku=10% Ku=50% Ku=90%

NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR

LR [29] 47.34 67.59 47.42 67.73 47.65 67.88 47.75 67.82 47.87 68.08 21.97 34.57 22.08 35.65 25.24 36.83 29.70 46.14 31.48 50.98
BPR [26] 42.93 62.22 43.07 62.67 43.20 62.99 43.24 63.45 43.37 63.45 3.01 6.28 3.06 6.64 3.21 6.85 2.74 6.51 4.84 10.44

NeuMF [25] 46.20 66.66 47.27 67.21 47.74 67.92 48.01 68.19 47.95 68.27 21.53 33.86 21.87 34.07 25.34 37.66 30.78 48.81 30.14 48.73

MMoE [30] 45.23 66.45 45.86 66.88 46.87 67.58 47.81 68.60 47.92 68.55 20.49 34.88 20.59 35.04 20.70 36.53 31.92 52.32 35.84 57.20
PLE [31] 48.93 69.01 49.03 69.28 49.36 69.40 49.31 69.59 49.39 69.79 21.82 36.09 22.13 36.16 22.91 36.70 33.02 51.40 35.02 55.37

CoNet [4] 47.85 68.05 48.06 68.25 48.23 68.63 48.37 68.39 48.43 68.65 18.07 29.47 18.60 30.65 20.29 33.03 29.14 49.06 33.97 54.95
MiNet [6] 47.61 67.59 48.24 68.46 48.84 68.78 48.90 69.01 48.86 69.07 19.89 34.04 21.34 35.82 23.78 37.75 32.18 52.61 34.89 55.91

GA-DTCDR [5] 45.94 66.51 47.65 68.09 49.20 69.26 49.59 69.86 49.63 69.94 21.72 32.51 23.05 34.41 25.40 38.00 33.19 53.32 36.60 57.29

DML [10] 47.12 67.84 47.95 68.56 49.01 69.77 48.87 69.50 48.84 69.56 21.01 35.75 22.80 37.35 25.84 39.04 32.81 51.44 34.61 54.74
HeroGraph [11] 48.89 68.37 49.16 68.69 49.45 69.17 49.71 69.64 49.85 69.66 19.07 30.77 19.63 31.44 21.74 33.78 32.23 51.11 35.40 56.41
PTUPCDR [12] 48.01 68.48 48.32 68.84 49.14 69.32 49.55 69.91 49.54 69.93 22.13 36.05 22.84 36.83 24.14 37.75 33.24 53.03 35.61 56.24

NMCDR 49.47 69.54 49.69 69.84 49.84 69.97 49.89 69.98 49.91 70.06 25.32 39.47 25.69 39.75 26.38 40.46 35.24 55.03 37.29 58.54
Improvement(%) 1.10 0.77 1.07 0.80 0.79 0.29 0.36 0.10 0.12 0.17 14.41 9.37 11.45 6.43 2.09 3.64 6.02 3.21 1.89 2.18

TABLE VI: Experimental results (%) on the bi-directional Cloth-Sport and Loan-Fund CDR scenarios under different density settings Ds.

Methods

Cloth-domain recommendation Sport-domain recommendation Loan-domain recommendation Fund-domain recommendation

Ds=10% Ds=50% Ds=70% Ds=10% Ds=50% Ds=70% Ds=10% Ds=50% Ds=70% Ds=10% Ds=50% Ds=70%

NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR

LR [29] 2.41 5.38 2.87 6.20 3.21 6.95 2.47 5.42 2.61 5.79 4.20 8.61 23.30 32.84 31.03 42.66 38.90 53.03 14.54 23.03 18.33 28.43 19.89 30.67
BPR [26] 2.52 5.61 2.48 5.41 2.45 5.49 2.53 5.63 2.45 5.58 2.66 5.84 20.68 30.70 27.95 41.28 34.04 50.50 1.31 3.11 1.93 4.45 2.50 5.51

NeuMF [25] 2.61 5.78 2.74 5.96 2.75 5.96 2.48 5.39 2.68 5.90 3.37 7.02 23.62 33.13 31.41 45.04 37.55 54.66 15.31 23.43 17.47 25.79 19.17 27.84

MMoE [30] 2.67 5.93 2.92 6.35 3.37 7.34 2.66 5.91 2.84 6.25 4.35 9.02 23.40 32.71 30.34 42.70 36.11 52.24 15.78 25.25 18.46 27.87 19.12 29.83
PLE [31] 2.51 5.51 2.78 6.12 3.31 7.10 2.57 5.64 2.73 5.91 4.26 8.74 23.79 34.01 31.98 44.29 41.02 56.44 16.28 24.55 17.57 27.89 19.75 29.23

CoNet [4] 2.83 6.11 2.81 6.11 3.40 7.09 2.51 5.60 2.76 6.18 4.22 8.68 23.11 33.62 31.38 45.51 37.13 54.62 14.53 23.99 16.27 28.47 18.07 29.42
MiNet [6] 2.74 5.74 2.83 6.19 3.14 6.81 2.49 5.61 2.69 5.96 3.95 8.31 24.55 35.45 32.55 47.14 41.51 57.54 14.63 24.24 17.27 28.59 18.80 30.38

GA-DTCDR [5] 2.81 6.03 3.00 6.44 3.48 7.50 2.47 5.48 2.87 6.17 4.47 9.24 24.15 34.53 31.87 44.01 40.11 57.49 15.84 25.90 19.35 31.75 22.17 32.96

DML [10] 2.60 5.64 2.84 6.23 3.19 6.85 2.41 5.36 2.87 6.26 3.54 7.41 23.45 34.63 32.39 45.98 38.51 55.39 16.28 24.60 20.00 30.88 22.62 33.52
HeroGraph [11] 2.62 5.68 2.98 6.42 3.33 7.18 2.59 5.74 2.74 6.13 4.25 8.87 24.61 33.52 32.43 43.76 38.09 54.44 15.86 25.12 18.05 30.13 19.81 28.81
PTUPCDR [12] 2.77 6.03 2.89 6.21 3.62 7.72 2.38 5.35 2.82 6.34 4.32 8.88 23.76 34.17 32.26 45.67 40.81 53.97 16.54 26.06 19.11 32.26 20.82 32.35

NMCDR 2.97 6.29 3.40 6.96 4.15 8.60 2.80 6.05 3.39 6.97 5.39 10.46 25.37 36.71 34.18 49.75 44.19 61.38 17.82 26.98 21.40 33.96 24.68 34.90
Improvement(%) 4.95 2.95 13.33 8.07 14.64 11.40 5.26 2.37 18.12 9.94 20.58 13.20 3.09 3.55 5.01 5.54 6.45 6.67 9.46 3.53 7.00 5.27 9.11 4.12

2) For Multi-task Learning Methods: (i) In most cases,
PLE achieves better performance than MMOE, which indi-
cates that task-shared and task-specific components can avoid
harmful parameter interference across tasks. (ii) Under the
larger overlapping conditions (Ku = 50% or 90%), the multi-
task methods could obtain comparable performance with cross
domain recommendation methods such as CoNet, MiNet and
GA-DTCDR. But such multi-task methods exhibit inferior per-
formance compared with cross domain recommendation meth-
ods based on partially overlapping settings, i.e., Herograph and
PTUPCDR, since they still rely heavily on overlapping users
to transfer knowledge across domains.

3) For Cross-Domain Recommendation Methods: (i) For
cross-domain methods based on fully overlapping conditions,
GNN based methods (i.e., GA-DTCDR) consistently perform
better than the traditional models (i.e., CoNet and MiNet),
which demonstrates the remarkable capacity of GNN to
model complex user-item interactions and aggregate beneficial
neighboring information. (ii) The performance of such fully
overlapped CDR models increases with the increasing of
overlapping ratio Ku, especially when Ku = 90%, they show
comparable results with partial overlapping models (i.e., DML

and Herograph) in most experimental cases and GA-DTCDR
even achieves the second-best results for “Cloth-Sport” and
“Loan-Fund” scenarios. (iii) Compared with fully overlapping
CDR methods, the partial overlapping CDR models, i.e.,
Herograph and PTUPCDR, consistently exhibit better perfor-
mance and could achieve second best results in small over-
lapping experimental settings, i.e., Ku = 0.1%–50%, which
indicates that modeling and transferring non-overlapping users
across domains is essential to improve recommendation quality
in general partial overlapped CDR scenarios. (iv) Though
PTUPCDR achieves remarkable success in most cases, the
model treats all users equally and does not pay special atten-
tion to the majority of data-sparse users. Thus, compared with
the proposed NMCDR, it possesses an inferior performance.

4) For Our NMCDR: (i) Comparing with other cross-
domain baselines, our proposed NMCDR consistently achieves
great performance improvements on all four CDR scenarios
with all evaluation metrics, especially when Ku gets extremely
small, e.g., 0.1% or 1%. Differing from the other CDR base-
lines relying heavily on overlapped users to bridge connections
of multiple domains and then conduct knowledge transferring,
our well-designed intra-to-inter node matching module could
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well propagate cross-domain information for both overlapped
and non-overlapped users. Furthermore, by introducing the
intra node complementing module, we correct the biased
representations for each user, especially for the tail users,
which conducts missing information completion. (ii) Tables
II and V with the average interactions of items as (16.27,
30.66) and (204.57, 65.41) show the smaller improvement than
Tables III–IV with the average interactions of items as (16.98,
21.04) and (10.82, 13.46). The average interactions of items
means that the total number of user-item interaction divided
by the item numbers (for example, the average interactions
of items in Music domain is computed by 713,740/43,858
= 16.27). The higher average interactions of items would
ease up the effectiveness of the complemented users’ potential
missing interactions provided by our model, leads to the lower
improvement in Table II and Table V.

5) Comparisons with different density: Besides, to verify
NMCDR’s superior performance in CDR scenarios with dif-
ferent data densities, we further conduct studies by varying
the data density Ds in {10%, 50%, 70%}. The experimen-
tal results of “Cloth-Sport” and “Loan-Fund” scenarios are
given in Table VI. Taking the “Cloth-Sport” task as example,
Ds = 50% indicates that the data densities of “Cloth” domain
and “Sport” domain change from 0.06% to 0.03% (computed
as 0.06% * 0.5 = 0.03%) and 0.02% to 0.01% (computed as
0.02% * 0.5 = 0.01%), respectively. The performance of all
models decrease with the decreasing of data density, which
makes sense as sparser data makes the representation learn-
ing and knowledge transferring quite challenging. It is also
interesting that the performance improvements of our model
against second-best baselines decrease with the decreasing of
Ds. This phenomenon further verifies that too sparse user-item
interactions, i.e., Ds = 10% or 50%, would make all model’s
(including ours) representation learning procedure quite hard
and thus the improvement of our model is less remarkable.
Nevertheless, our method consistently outperforms all base-
lines in all sparsity experimental settings.

6) Model Efficiency: In this section, all the comparative
models are trained and tested on the same machine, which has
a single NVIDIA GeForce A100 with 80GB memory and Intel
Core i7-8700K CPU with 64G RAM. Moreover, the number
of parameters for typical PLE, MiNet, HeroGraph and NM-
CDR(ours) is in the same order of magnitude, which is 0.16M,
0.78M, 0.64M and 0.56M, respectively. The training/testing
efficiencies of PLE, MiNet, HeroGraph and NMCDR(ours)
processing the samples of one batch are 2.96× 10−4s/1.84×
10−4s, 7.65× 10−4s/4.56× 10−4s, 6.84× 10−4s/4.09× 10−4s,
and 5.34× 10−4s/3.92× 10−4s, respectively. In summary,
NMCDR could achieve superior performance enhancement in
(few) partial overlapping CDR settings while keeping promis-
ing time efficiency.

C. Online A/B Test (RQ1)

We conduct large-scale online A/B tests on finan-
cial partially-overlapping CDR scenarios of MYbank of

AntGroup3. In online serving platform of MYbank, large
number of users participate in one or multiple financial do-
mains, such as purchasing funds, mortgage loan or discounting
bills. Specifically, we choose three popular domains with
partially overlapped users, i.e., “Loan”, “Fund” and “Account”,
from MYbank serving platform to conduct the online testing.
The average statistics of online traffic logs for 1 day are
presented in Table VII. Our method NMCDR along with
three baselines are deployed in the online environment for
performance comparison and the overall experimental results
from December 1st to December 15th are shown in Table
VIII. Besides, each model conducts 20% of the online traffic
for a standard A/B testing configuration. The standard CVR
metric is utilized as the evaluation metrics. We can observe that
NMCDR outperforms all the baselines over all domains with
the significant improvement about 6.81%, 4.70% and 6.58%
in three domains. The result verifies NMCDR’s capacity
of improving the recommendation performance of multiple
domains simultaneously in real online environment.

TABLE VII: Average statistics of online traffic logs for 1 day.

Dataset Users Items Ratings #Overlapping Density

Loan 45,263,394 48,282 778,136,734
488,836

0.04%
Fund 801,349 1,039 479,504 0.06%

Account 4,856,675 9,816 9,149,842 0.02%

#Overlapping denotes the number of overlapped users across domains.

TABLE VIII: Experimental results of the online A/B testing from 12.1 to
12.15, 2022

Loan Domain Fund Domain Account Domain

Control Group 10.50% 6.12% 1.89%
MMOE Group 12.14% 6.45% 2.11%

PLE Group 12.57% 6.69% 2.27%
DML Group 12.93% 6.81% 2.43%

NMCDR Group 13.81% 7.13% 2.59%
Improvement 6.81% 4.70% 6.58%

D. Model Analysis (RQ2)

1) Impact of Different Model Components: To verify the
contribution of each key component of NMCDR, we conduct
an ablation study by comparing with several variants: (i)
w/o-Igm: we remove the intra node matching component for
conducting intra knowledge fusion for both head and tail users
in every domain. (ii) w/o-Cgm: we remove the inter node
matching component for conducting inter domain knowledge
fusion and transferring across domains. (iii) w/o-Inc: we
remove the intra node complementing module for correcting
the biased user representations in each domain. (iv) w/o-Sup:
we remove the multiple supervisory signals into each key
module for guiding knowledge fusion and transfer procedure.
We conduct the ablation experiments with overlapping ratio
Ku = 50% and report the results in Table IX. Based on
Table IX, we draw the following observations: (a) It is critical
to perform intra knowledge fusion for both head and tail
users before conducting subsequent cross domain knowledge

3https://www.antgroup.com/en
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transferring, especially for tail users, since their information
deriving from sparsely observed interactions may be biased
and harmful to other domains, which hurts the performance as
shown in w/o-Igm column. (b) When removing the inter node
matching component, our model cannot collect and transfer
knowledge for both overlapping and non-overlapping users
across domains, which hurts the performance significantly.
(c) Without the intra node complementing module, the under-
represented user embeddings would be used to conduct rank-
ing recommendation tasks and thus impair performance. (d)
Without the multiple supervisory signals into each key module,
the performance also drops obviously, which indicates that
effective supervision signals are essential to guide the learning
process of each module and result in satisfying results. (e)
Overall, Cgm provides the largest contributes for our method.
Besides, the multiple supervisory signals (Sup) into each key
module for guiding knowledge fusion and transfer procedure
brings slightly larger contribution than Igm and Inc.

TABLE IX: Experimental results (%) with different model variants. w/o
denotes the model without the corresponding component variant.

Scenarios Metrics Model variants Ours
w/o-Igm w/o-Cgm w/o-Inc w/o-Sup

Music NDCG@10 10.28 9.30 10.90 9.78 11.26
HR@10 19.28 18.78 20.89 19.16 21.58

Movie NDCG@10 32.84 31.96 33.60 32.60 33.96
HR@10 48.73 48.01 50.48 48.93 51.13

Cloth NDCG@10 9.14 7.35 8.95 8.38 9.26
HR@10 17.99 15.14 17.65 17.59 18.33

Sport NDCG@10 14.75 13.02 14.60 13.98 14.91
HR@10 26.94 24.35 26.86 27.04 27.54

Phone NDCG@10 16.50 14.42 17.05 17.09 17.44
HR@10 29.47 25.37 29.70 29.82 30.87

Elec NDCG@10 23.75 20.82 24.10 24.13 24.45
HR@10 37.95 33.87 38.26 38.43 39.49

Loan NDCG@10 49.69 49.40 49.76 49.67 49.89
HR@10 69.83 69.32 69.89 69.79 69.98

Fund NDCG@10 34.84 34.77 35.10 34.90 35.24
HR@10 54.84 54.35 54.91 54.80 55.03

E. Hyperparameter Analysis (RQ3)

1) Number of Matching Neighbors: To explore the impact
of the number of the neighborhood for intra and inter node
matching, we conduct ablation experiments by varying the
number of matching neighbors from 128 to 1024. The average
evaluation results (i.e., NDCG@10 and HR@10) for each
dataset are shown in Fig. 3 and we can observe that as the
number of matching neighbors increases, the recommendation
performance initially rises steadily and then descend when the
matching neighbors reach 1024. This phenomenon indicates
that too small matching neighbors would provide limited
transferred information, while too many matching neighbors
may introduce interference noise and impair the model per-
formance. In practice, we set 512 to balance the training
efficiency and model performance.

2) Threshold of Head/Tail User Discrimination: In this
part, we explore the impact of head/tail user discrimination

threshold Khead on model performance. If the historical in-
teractions of a user is greater than Khead, then he/she is
regarded as a head user. Otherwise he/she would be treated
as a tail user. The experimental results are shown in Fig. 4.
Firstly, the average performance gains of all tasks slightly rise
then descend with the increase of Khead. The small variations
of model performance indicate the robustness of NMCDR.
Besides, the variation tendency of model performance is
similar for different datasets, which may be caused by the data
pre-processing procedure as we remove the user with less than
5 interactions for each dataset.
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Fig. 3: Impact of number of matching neighbors.
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Fig. 4: Impact of threshold of head/tail user discrimination.

F. Visualization Analysis

Besides the quantitative evaluation, we also provide intuitive
user embeddings and try to visualize the effect of each key
component of NMCDR. Fig. 5 shows the t-SNE visualization
of the head (yellow dots) and tail (blue dots) user embeddings
on Amazon “Cloth-Sport” scenario with overlapping ratio
Ku = 50%. In Fig. 5, the first column (Figs. 5(a), (d)), second
column (Figs. 5(b), (e)) and third column (Figs. 5(c), (f))

11

10959
高亮文本



indicate the obtained user embeddings after being processed
by initial graph encoder layer, intra-to-inter node matching
module and intra node complementing module respectively.
From it, we have the following observations: (i) After a
typical heterogeneous graph encoder, the head and tail user
embeddings for both “Cloth” and “Sport” domains show clear
distinction as shown in Figs. 5(a) and (d), but the tail user
embedding may be under-represented based on the observed
sparse neighboring nodes and such issue is often neglected
in previous work. (ii) As shown in Figs. 5(b) and (e), the
head and tail user embeddings tend to align by conducting
fully connected intra and inter knowledge transferring. (iii)
After intra node complementing module as shown in Figs.
5(c) and (f), the embedding distributions of tail users do
exhibit quite similar to that of head users by complementing
potential missing interaction information, which is essential
to get superior recommendation performance and in line with
our motivation.
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Fig. 5: The visualization of learned user representations for evaluating the
effectiveness of NMCDR’s each key component.

IV. RELATED WORK

Multi-Target Cross Domain Recommendation is an effec-
tive method to improve the recommendation performance in
multiple domains simultaneously and to alleviate the long-
standing data sparsity and cold-start problem in recommender
systems. Generally, the existing works of multi-target CDR
can be roughly divided into the following two groups: cross-
domain models based on fully overlapping settings and cross-
domain models intending to handle partially overlapped CDR
tasks. To transfer knowledge across domains based on fully
overlapping settings, several excellent works focusing on fea-
ture combination [1]–[3] or bi-directional transfer mapping
strategies [4]–[7] have been proposed and achieved promis-
ing results. Especially, PPGN [3] combines the dual-domain
features into the graph neural networks to learn the cross-
domain information, while CoNet [4], GA-DTCDR [5] and
MiNet [6] mainly focus on designing the mapping functions
to fuse and transfer useful information across domains. As the
above learning frameworks primarily assume the existence of
fully overlapped users or items across domains, leading them
incapable of handling partially overlapped CDR scenarios. To

alleviate this issue and develop models for partially overlapped
CDR settings, several recent efforts [8]–[11] try to introduce
graphic neural networks to get both overlapped and non-
overlapped user embeddings by collecting user-item interac-
tions. Additionally, PTUPCDR [12] designs a meta network
to generate personalized bridge functions for each user. SA-
VAE [7] and VDEA [13] utilizes variational auto-encoder
(VAE) framework to exploit user domain-invariant embedding
across different domains. However, such partially overlapped
models treat all users equally and do not pay special attention
to the majority of data-sparse users and resulting in inferior
knowledge fusing and transferring effectiveness.
Neural Graph Matching intends to discover the node level
or graph level similarity between two given graphs [18], [32],
[33]. Before GNNs-based methods, traditional graph matching
approaches usually measure graph similarity based on heuristic
rules, i.e., minimal graph edit distance [34], [35], or graph
kernel based matching methods, i.e., random walks inside
graphs [36], [37] and graph sub-structures [38], [39]. In recent
years, GNNs-based graph matching methods are frequently
proposed and achieved great success. Li et al. [40] consider
computing the similarity of two given graphs by a carefully
designed cross-graph attention-based matching mechanism.
Xu et al. [41] formulate the KB-alignment task as a graph
matching problem and models the local matching information
through a graph-attention based solution. Soldan et al. [42]
introduces a Video-Language graph matching network and uti-
lize the mutual exchange of information to enhance the multi-
modal representation for video grounding task. Recently, Su
et al. [43] proposes a neural graph matching CF-based model
to capture attribute interactions for recommendation system.
However, such CF-based graph matching framework cannot
be directly utilized in CDR scenarios when encountering data
sparsity issues.

V. CONCLUSION

In this paper, to develop a simple-yet-effective multi-target
CDR framework for the more general CDR settings with
only partially overlapped users or items, we propose a novel
node matching based framework, namely NMCDR. The de-
veloped model mainly contains two modules, i.e., intra-to-
inter node matching and intra node complementing module.
The intra-to-inter node matching module could effectively fuse
and transfer the knowledge within-domain as well as cross-
domain for all users, especially for the non-overlapping users,
without relying heavily on overlapping users. Additionally,
intra node complementing module complements the potential
missing information for each user to correct his/her biased
representation for ranking recommendation tasks, especially
for the tail users with observed sparse interactions. To our
knowledge, this paper is the first work to correct the potential
interactions bias in multi-target CDR scenarios. Extensive
experiments demonstrate the remarkable effectiveness of the
proposed approach in kinds of evaluation metrics and elaborate
ablation studies present the contribution of each module to the
final performance gain.
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